Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2303204

ABSTRACT

Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.

2.
J Biomol Struct Dyn ; : 1-14, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2097034

ABSTRACT

COVID-19, a disease caused by SARS-CoV-2, was declared a pandemic in 2020 and created a global crisis in health systems, with more than 545 million confirmed cases and 6.33 million deaths. In this sense, this work aims to identify possible inhibitors of the SARS-CoV-2 RdRp enzyme using in silico approaches. RdRp is a crucial enzyme in the replication and assembly cycle of new viral particles and a critical pharmacological target in the treatment of COVID-19. We performed a virtual screening based on molecular docking from our in-house chemical library, which contains a diversity of 313 structures from different chemical classes. Nine compounds were selected since they showed important interactions with the active site from RdRp. Next, the ADME-Tox in silico predictions served as a filter and selected the three most promising compounds: a coumarin LMed-052, a hydantoin LMed-087, and a guanidine LMed-250. Molecular dynamics simulations revealed details such as changes in the positions of ligands and catalytic residues during the simulations compared to the complex from molecular docking studies. Binding free energy analysis was performed using the MMGBSA method, demonstrating that LMed-052 and LMed-087 have better affinities for the RdRp by energetic contributions to the stability of the complexes when compared to LMed-250. Furthermore, LMed-052 showed significant in vitro inhibition against MHV-3, decreasing 99% of viral titers. Finally, these findings are useful to guide structural modifications aiming to improve the potential of these compounds to act as inhibitors of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-14, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2037154

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), became the highest public health crisis nowadays. Although the use of approved vaccines for emergency immunization and the reuse of FDA-approved drugs remains at the forefront, the search for new, more selective, and potent drug candidates from synthetic compounds is also a viable alternative to combat this viral disease. In this context, the present study employed a computational virtual screening approach based on molecular docking and molecular dynamics (MD) simulation to identify possible inhibitors for SARS-CoV-2 Mpro (main protease), an important molecular target required for the maturation of the various polyproteins involved in viral replication. The virtual screening approach selected four potential inhibitors against SARS-CoV-2 Mpro. In addition, MD simulation studies revealed changes in the positions of the ligands during the simulations compared to the complex obtained in the molecular docking studies, showing the benzoylguanidines LMed-110 and LMed-136 have a higher affinity for the active site compared to the other structures that tended to leave the active site. Besides, there was a better understanding of the formation and stability of the existing H-bonds in the formed complexes and the energetic contributions to the stability of the target-ligand molecular complexes. Finally, the in silico prediction of the ADME profile suggested that LMed-136 has drug-like characteristics and good pharmacokinetic properties. Therefore, from the present study, it can be suggested that these structures can inhibit SARS-CoV-2 Mpro. Nevertheless, further studies are needed in vitro assays to investigate the antiviral properties of these structures against SARS-CoV-2.

4.
Front Microbiol ; 13: 842600, 2022.
Article in English | MEDLINE | ID: covidwho-1862624

ABSTRACT

Multidrug-resistant bacteria have become a public health problem worldwide, reducing treatment options against several pathogens. If we do not act against this problem, it is estimated that by 2050 superbugs will kill more people than the current COVID-19 pandemic. Among solutions to combat antibacterial resistance, there is increasing demand for new antimicrobials. The antibacterial activity of binary combinations containing bioAgNP (biogenically synthesized silver nanoparticles using Fusarium oxysporum), oregano essential oil (OEO), carvacrol (Car), and thymol (Thy) was evaluated: OEO plus bioAgNP, Car plus bioAgNP, Thy plus bioAgNP, and Car plus Thy. This study shows that the mechanism of action of Thy, bioAgNP, and Thy plus bioAgNP involves damaging the membrane and cell wall (surface blebbing and disruption seen with an electron microscope), causing cytoplasmic molecule leakage (ATP, DNA, RNA, and total proteins) and oxidative stress by enhancing intracellular reactive oxygen species and lipid peroxidation; a similar mechanism happens for OEO and Car, except for oxidative stress. The combination containing bioAgNP and oregano derivatives, especially thymol, shows strategic antibacterial mechanism; thymol disturbs the selective permeability of the cell membrane and consequently facilitates access of the nanoparticles to bacterial cytoplasm. BioAgNP-treated Escherichia coli developed resistance to nanosilver after 12 days of daily exposition. The combination of Thy and bioAgNP prevented the emergence of resistance to both antimicrobials; therefore, mixture of antimicrobials is a strategy to extend their life. For antimicrobials alone, minimal bactericidal concentration ranges were 0.3-2.38 mg/ml (OEO), 0.31-1.22 mg/ml (Car), 0.25-1 mg/ml (Thy), and 15.75-31.5 µg/ml (bioAgNP). The time-kill assays showed that the oregano derivatives acted very fast (at least 10 s), while the bioAgNP took at least 30 min to kill Gram-negative bacteria and 7 h to kill methicillin-resistant Staphylococcus aureus (MRSA). All the combinations resulted in additive antibacterial effect, reducing significantly minimal inhibitory concentration and acting faster than the bioAgNP alone; they also showed no cytotoxicity. This study describes for the first time the effect of Car and Thy combined with bioAgNP (produced with F. oxysporum components) against bacteria for which efficient antimicrobials are urgently needed, such as carbapenem-resistant strains (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) and MRSA.

5.
Front Microbiol ; 13: 860908, 2022.
Article in English | MEDLINE | ID: covidwho-1798929
6.
Nanomaterials (Basel) ; 11(11)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1524091

ABSTRACT

In view of the current Coronavirus Disease 2019 (COVID-19) pandemic outbreak, the research community is focusing on development of diagnostics, treatment, and vaccines to halt or reverse this scenario. Although there are already various vaccines available, adaptive mutations in the SARS-CoV-2 genome can alter its pathogenic potential and, at the same time, increase the difficulty of developing drugs or immunization by vaccines. Nanotechnology carries a potential to act in all stages in fighting this viral disease, with several possibilities of strategies such as applying nanoparticles directly as antivirals in delivery systems against these viruses or incorporating them in materials, with power of achievement in therapeutics, vaccines and prevention. In this paper, we review and bring insights of recent studies using metal nanocomposites as antivirals against coronavirus and structurally similar viruses.

SELECTION OF CITATIONS
SEARCH DETAIL